已知动圆过定点(1,0),且与直线
相切.
(1)求动圆圆心的轨迹方程;
(2)设是轨迹
上异于原点
的两个不同点,直线
和
的倾斜角分别为
和
,①当
时,求证直线
恒过一定点
;
②若为定值
,直线
是否仍恒过一定点,若存在,试求出定点的坐标;若不存在,请说明理由.
(本小题满分12分)对于函数,
(1)求函数的定义域;
(2)当为何值时,
为奇函数;
(3)写出(2)中函数的单调区间,并用定义给出证明.
(本小题满分12分)某公司生产一种电子仪器的固定成本为20000元,每生产一台仪器需增加投入100元,已知总收益满足函数:,其中
是仪器的月产量,
(1)将利润表示为月产量
的函数;
(2)当月产量为何值时,公司所获利润最大?最大利润是多少元?(总收益=总成本+利润).
(本小题满分12分)已知函数,
(1)为何值时,
有两个零点且均比-1大;
(2)求在
上的最大值
.
(本小题满分10分)已知集合,
.
(1)求;
(2)已知集合,若
,求实数
的取值范围.
已知实数a≠0,函数
(1)若,求
,
的值;
(2)若,求
的值.