定义:若数列{An}满足An+1=,则称数列{An}为“平方递推数列”.已知数列{an}中,a1=2,点(an,an+1)在函数f(x)=2x2+2x的图象上,其中n为正整数.
(1)证明:数列{2an+1}是 “平方递推数列”,且数列{lg(2an+1)}为等比数列.
(2)设(1)中“平方递推数列”的前n项之积为Tn,即Tn=(2a1+1)(2a2+1)…(2an+1),求数列{an}的通项公式及Tn关于n的表达式.
如图⑴在直角梯形PDCB中,PD∥CB,CD⊥PD,PD=6,BC=3,DC=,A是线段PD的中点,E是线段AB的中点;如图⑵,沿AB把平面PAB折起,使二面角P-CD-B成45
角.
⑴求证PA⊥平面ABCD;
⑵求平面PEC和平面PAD所成的锐二面角的大小.
![]() |
已知向量且
,函数
(1)求函数的最小正周期及单调递增区间;(2)若
,分别求
及
的值
已知函数。
(1)是否存在实数,使得
处取极值?试证明你的结论;
(2)若上是减函数,求实数
的取值范围。
已知数列的首项为
(1)若
,求证:数列
是等比数列;(2)若
,求数列
的前
项和.
如图,三棱锥中,
底面
,
,
,点
、
分别是
、
的中点.
(1)求证:⊥平面
;(2)求二面角
的余弦值。