在等差数列{an}中,a1=3,其前n项和为Sn,等比数列{bn}的各项均为正数,b1=1,公比为q,且b2+S2=12,q=.
(1)求an与bn.
(2)证明:≤
+
+…+
<
.
如图所示,在长方体中,
,
,
是棱
上一点,
(1)若为CC1的中点,求异面直线A1M和C1D1所成的角的正切值;
(2)是否存在这样的,使得平面ABM⊥平面A1B1M,若存在,求出
的值;若不存在,请说明理由。
已知椭圆,左右焦点分别为
,
(1)若上一点
满足
,求
的面积;
(2)直线交
于点
,线段
的中点为
,求直线
的方程。
已知抛物线:
的焦点为圆
的圆心,直线
与
交于不同的两点
.
(1) 求的方程;
(2) 求弦长。
如图,已知四棱锥的底面是正方形,
⊥底面
,且
,点
、
分别为侧棱
、
的中点
(1)求证:∥平面
;
(2)求证:⊥平面
.
(本小题满分12分)如图,椭圆的离心率为
,直线
和
所围成的矩形ABCD的面积为8.
(Ⅰ)求椭圆M的标准方程;
(Ⅱ) 设直线与椭圆M有两个不同的交点
与矩形ABCD有两个不同的交点
.求
的最大值及取得最大值时m的值.