设函数f(x)=sin+sin
+
cos ωx(其中ω>0),且函数f(x)的图象的两条相邻的对称轴间的距离为
.
(1)求ω的值;
(2)将函数y=f(x)的图象上各点的横坐标伸长到原来的2倍,纵坐标不变,得到函数y=g(x)的图象,求函数g(x)在区间上的最大值和最小值.
设函数,
(1)求f(x)的周期;
(2)当x∈[﹣π,π]时,求f(x)单调递增区间;
(3)当x∈[0,2π]时,求f(x)的最大值和最小值.
已知椭圆的左焦点F为圆x2+y2+2x=0的圆心,且椭圆上的点到点F的距离最小值为
.
(Ⅰ)+y2=1;
(Ⅱ)已知经过点F的动直线l与椭圆交于不同的两点A、B,点M(),证明:
为定值.
已知△ABC中,角A,B,C所对的边分别是a,b,c,且2(a2+b2﹣c2)=3ab;
(1)求;
(2)若c=2,求△ABC面积的最大值.
已知数列{an}的各项均为正数,Sn是数列{an}的前n项和,且4Sn=an2+2an﹣3.
(1)求数列{an}的通项公式;
(2)已知bn=2n,求Tn=a1b1+a2b2+…+anbn的值.
设函数f(x)=ax2+(b﹣2)x+3(a≠0)
(1)若不等式f(x)>0的解集(﹣1,3).求a,b的值;
(2)若f(1)=2,a>0,b>0求+
的最小值.