已知函数f(x)=2sin (0≤x≤5),点A、B分别是函数y=f(x)图象上的最高点和最低点.
(1)求点A、B的坐标以及·
的值;
(2)设点A、B分别在角α、β的终边上,求tan(α-2β)的值.
(本小题满分12分)如图,四棱锥P−ABCD中,底面ABCD为平行四边形,O为AC的中点,PO⊥平面ABCD,M 为PD的中点,∠ADC=45o,AD=AC =1,PO="a"
(1)证明:DA⊥平面PAC;
(2)如果二面角M−AC−D的正切值为2,求a的值.
(本小题满分12分)已知
(1)求函数的最小正周期及在区间
的最大值;
(2)在中,
所对的边分别是
,
,
求周长
的最大值.
(本小题满分10分)等差数列中,
,公差
且
成等比数列,前
项的和为
.
(1)求及
;
(2)设,
,求
.
已知集合A={x|2≤x≤8},B={x|1<x<6},C={x|x>a},U=R.
(1)求A∪B,(∁UA)∩B;
(2)若A∩C≠∅,求a的取值范围.
证明:(1)对任一正整,都存在整数
,使得
成等差数列。
(2)存在无穷多个互不相似的三角形,其边长
为正整数且
成等差数列。