游客
题文

已知函数f(x)=在点(-1,f(-1))处的切线方程为x+y+3=0.
(1)求函数f(x)的解析式.
(2)设g(x)=lnx.求证:g(x)≥f(x)在[1,+∞)上恒成立.

科目 数学   题型 解答题   难度 较难
知识点: 组合几何
登录免费查看答案和解析
相关试题

(本小题满分12分)已知椭圆的方程是,椭圆的左顶点为,离心率,倾斜角为的直线与椭圆交于两点.
(Ⅰ)求椭圆的方程;
(Ⅱ)设向量),若点在椭圆上,求的取值范围.

(本小题满分12分)已知两地的距离是120km.假设汽油的价格是6元/升,以km/h(其中)速度行驶时,汽车的耗油率为L/h,司机每小时的工资是28元.那么最经济的车速是多少?如不考虑其他费用,这次行车的总费用是多少?

(本小题满分10分)已知函数的图象过原点,且处取得极值.
(Ⅰ)求函数的单调区间及极值;
(Ⅱ)若函数的图象有且仅有一个公共点,求实数的取值范围.

(本小题满分12分)已知直线过定点,且与抛物线交于两点,抛物线在两点处的切线的相交于点
(I)求点的轨迹方程;
(II)求三角形面积的最小值.

(本小题满分12分)已知函数
(I)若函数上是减函数,求实数的取值范围;
(II)令,是否存在实数,使得当时,函数的最小值是,若存在,求出实数的值,若不存在,说明理由?
(III)当时,证明:

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号