某工厂的固定成本为3万元,该工厂每生产100台某产品的生产成本为1万元,设生产该产品x(百台),其总成本为g(x)万元(总成本=固定成本+生产成本),并且销售收人r(x)满足
假定该产品产销平衡,根据上述统计规律求:
(1)要使工厂有盈利,产品数量x应控制在什么范围?
(2)工厂生产多少台产品时盈利最大?
(本小题满分12分)
如图,在长方体中,
,
为
的中点,
为
的中点。
(1)证明:;
(2)求与平面
所成角的正弦值。
(本小题满分12分)
设进入某商场的每一位顾客购买甲种商品的概率为,购买乙种商品的概率为
,且购买甲种商品与购买乙种商品相互独立,各顾客之间购买商品也是相互独立的。
(1)求进入商场的1位顾客购买甲、乙两种商品中的一种的概率;
(2)求进入商场的1位顾客至少购买甲、乙两种商品中的一种的概率;
(3)记表示进入商场的3位顾客中至少购买甲、乙两种商品中的一种的人数,求
的分布列及期望。
在中,内角
对边的边长分别是
,且满足
,
。
(1)时,若
,求
的面积.
(2)求的面积等于
的一个充要条件。
(本小题满分13分)
如图,椭圆C: 的焦点为F1(0,c)、F2(0,一c)(c>0),抛物线
的焦点与F1重合,过F2的直线l与抛物线P相切,切点在第一象限,且与椭圆C相交于A、B两点,且
(I)求证:切线l的斜率为定值
|
(Ⅱ)设抛物线P与直线l切于点E,若△OEF2面积为1,求椭圆C和抛物线P的方程。
(本小题满分13分)
已知函数
(I)求函数的通项公式;
(Ⅱ)设的前n项和Sn。