如图,在四棱锥P-ABCD中,PA⊥底面ABCD,底面ABCD为梯形,AB∥DC,∠ABC=∠CAD=90°,且PA=AB=BC,点E是棱PB上的动点.(1)若PD∥平面EAC,试确定点E在棱PB上的位置.(2)在(1)的条件下,求二面角A-CE-P的余弦值.
设函数 (1)当时,求曲线处的切线方程; (2)当时,求的极大值和极小值; (3)若函数在区间上是增函数,求实数的取值范围.
已知椭圆的长轴长为,焦点是,点到直线的距离为,过点且倾斜角为锐角的直线与椭圆交于A、B两点,使得. (1)求椭圆的标准方程; (2)求直线l的方程.
已知直三棱柱中, ,, 是和的交点, 若. (1)求的长;(2)求点到平面的距离; (3)求二面角的平面角的正弦值的大小.
把函数的图象按向量平移得到函数的图象. (1)求函数的解析式; (2)若,证明:.
求由抛物线与直线及所围成图形的面积.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号