(本小题满分12分)袋子中有质地、大小完全相同的4个球,编号分别为1,2,3,4.甲、乙两人玩一种游戏:甲先摸出一个球,记下编号,放回后乙再摸一个球,记下编号,若两个编号的和为奇数算甲赢,否则算乙赢.记基本事件为,其中
分别为甲、乙摸到的球的编号。
(1)列举出所有的基本事件,并求甲赢且编号的和为5的事件发生的概率;
(2)比较甲胜的概率与乙胜的概率,并说明这种游戏规则是否公平。(无详细解答过程,不给分)
(3) 如果请你猜这两球的号码之和,猜中有奖.猜什么数获奖的可能性大?说明理由.
.
已知等差数列的首项为
,公差为b,等比数列
的首项为b,公比为a(其中a,b均为正整数)。
(I)若,求数列
的通项公式;
(II)对于(1)中的数列,对任意
在
之间插入
个2,得到一个新的数列
,试求满足等式
的所有正整数m的值;
(III)已知,若存在正整数m,n以及至少三个不同的b值使得等
成立,求t的最小值,并求t最小时a,b的值。
已知函数
(I)当a=2时,求函数的最大值和最小值;
(II)若函数,求函数
的单调递减区间;
(III)当a=1时,求证:
如图为河岸一段的示意图,一游泳者站在河岸的A点处,欲前往河对岸的C点处。若河宽BC为100m,A、B相距100m,他希望尽快到达C,准备从A步行到E(E为河岸AB上的点),再从E游到C。已知此人步行速度为v,游泳速度为0.5v。
(I)设,试将此人按上述路线从A到C所需时间T表示为
的函数;并求自变量
取值范围;
II)当为何值时,此人从A经E游到C所需时间T最小,其最小值是多少?
定义在R上的单调函数满足
,且对任意
都有
(I)试求的值并证明函数
为奇函数;
(II)若对任意
恒成立,求实数m的取值范围。
已知函数
(I)求的最大值和最小正周期;
(II)若,求
的值。