(本小题满分10分)某校数学课外兴趣小组为研究数学成绩是否与性别有关,先统计本校高三年级每个学生一学期数学成绩平均分(采用百分制),剔除平均分在30分以下的学生后,共有男生300名,女生200名.现采用分层抽样的方法,从中抽取了100名学生,按性别分为两组,并将两组学生成绩分为6组,得到如下所示频数分布表.
分数段 |
[40,50) |
[50,60) |
[60,70) |
[70,80) |
[80,90) |
[90,100] |
男 |
3 |
9 |
18 |
15 |
6 |
9 |
女 |
6 |
4 |
5 |
10 |
13 |
2 |
估计男、女生各自的成绩平均分(同一组数据用该组区间中点值作代表),从计算结果看,判断数学成绩与性别是否有关;
|
优分 |
非优分 |
合计 |
男生 |
|
|
|
女生 |
|
|
|
合计 |
|
|
100 |
(2)规定80分以上为优分(含80分),请你根据已知条件作出列联表,并判断是否有
以上的把握认为“数学成绩与性别有关”.
附表及公式
![]() |
0.100 |
0.050 |
0.010 |
0.001 |
![]() |
2.706 |
3.841 |
6.635 |
10.828 |
.
已知函数.
(1)求函数定义域和函数图像所过的定点;
(2)若已知时,函数最大值为2,求
的值.
已知.
(1)求的最小正周期及
;
(2)求的单调增区间;
(3)当时,求
的值域.
已知,
.
(1)求及
;
(2)求的值.
已知二次函数.
(1)若,试判断函数
零点个数.
(2)若对且
,
,证明方程
必有一个实数根属于
.
(3)是否存在,使
同时满足以下条件①当
时,函数
有最小值0;②对任意实数x,都有
.若存在,求出
的值,若不存在,请说明理由.
已知圆:
,直线
过定点
.
(1)若直线与圆相切,切点为
,求线段
的长度;
(2)若与圆相交于
两点,线段
的中点为
,又
与
:
的交点为
,判断
•
是否为定值,若是,则求出定值;若不是,请说明理由.