如图,A,B,C,D为空间四点.在△ABC中,AB=2,AC=BC=.等边三角形ADB以AB为轴转动.
(1)当平面ADB⊥平面ABC时,求CD.
(2)当△ADB转动时,是否总有AB⊥CD?证明你的结论.
如图,在三棱锥 中, , , ,点 在平面 内的射影 在 上。
(Ⅰ)求直线
与平面
所成的角的大小;
(Ⅱ)求二面角
的大小。
已知函数
.
(Ⅰ)求函数
的最小正周期和值域;
(Ⅱ)若
,求
的值.
某居民小区有两个相互独立的安全防范系统(简称系统)
和
,系统
和系统
在任意时刻发生故障的概率分别为
和
。
(Ⅰ)若在任意时刻至少有一个系统不发生故障的概率为
,求的
值;
(Ⅱ)求系统 在3次相互独立的检测中不发生故障的次数大于发生故障的次数的概率。
设函数
(1)设
,
,
,证明:
在区间
内存在唯一的零点;
(2)设
为偶数,
,
,求
的最小值和最大值;
(3)设
,若对任意
,有
,求
的取值范围;
已知椭圆
,
以
的长轴为短轴,且与
有相同的离心率。
(1)求椭圆
的方程;
(2)设
为坐标原点,点
分别在椭圆
和
上,
,求直线
的方程.