已知椭圆的中心为坐标原点,短轴长为2,一条准线的方程为l:x=2.
(1)求椭圆的标准方程.
(2)设O为坐标原点,F是椭圆的右焦点,点M是直线l上的动点,过点F作OM的垂线与以OM为直径的圆交于点N,求证:线段ON的长为定值.
已知函数.
(1)将的图象向右平移两个单位,得到函数
,求
的解析式;
(2)函数与函数
的图像关于直线
对称,求
的解析式;
(3)设的最小值是
,且
,求实数
的取值范围.
求函数在
上的最大值,其中
设函数f(x)=ax2+8x+3a<0
。对于给定的负数a,有一个最大的正数l(a),使得在整个区间[0,l(a)]上,不等式|f(x)|≤5恒成立.问:a为何值时,l(a)最大?求出这个最大的l(a),证明你的结论.
设{a}是由正数组成的等比数列,S
是前n项和。
①证明:<lgS
;
②是否存在常数c>0,使得=lg(S
-c)成立?并证明结论。
求证平行于三棱锥的两条相对棱的平面截三棱锥所得的截面是平行四边形.
已知:如图,三棱锥S—ABC,SC∥截面EFGH,AB∥截面EFGH.
求证:截面EFGH是平行四边形.