已知抛物线
:
,过点
(其中
为正常数)任意作一条直线
交抛物线
于
两点,
为坐标原点.
(1)求
的值;
(2)过
分别作抛物线
的切线
,试探求
与
的交点是否在定直线上,证明你的结论.
已知函数
(
为实数,
,
),
(Ⅰ)若
,且函数
的值域为
,求
的表达式;
(Ⅱ)在(Ⅰ)的条件下,当
时,
是单调函数,求实数
的取值范围;
(Ⅲ)设
,
,
,且函数
为偶函数,判断
是否大于
?
提高过江大桥的车辆通行能力可改善整个城市的交通状况,在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度
(单位:辆/千米)的函数,当桥上的车流密度达到200辆/千米时,造成堵塞,此时车速度为0;当车流密度不超过20辆/千米时,车流速度为60千米,/小时,研究表明:当
时,车流速度v是车流密度
的一次函数.
(Ⅰ)当
时,求函数
的表达式;
(Ⅱ)当车流密度
为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)
可以达到最大,并求出最大值.(精确到1辆/小时)
已知函数
是奇函数,并且函数
的图像经过点(1,3).
(1)求实数
的值;
(2)求函数
的值域。
已知函数f(x)=x2-3x-10的两个零点为x1,x2(x1<x2),设A={x|x≤x1,或x≥x2},B={x|2m-1<x<3m+2},且A∩B=Ø,求实数m的取值范围.
(1)计算:
;(2)解方程:log3(6x-9)=3.