已知圆C与两圆x2+(y+4)2=1,x2+(y-2)2=1外切,圆C的圆心轨迹方程为L,设L上的点与点M(x,y)的距离的最小值为m,点F(0,1)与点M(x,y)的距离为n.
(1)求圆C的圆心轨迹L的方程.
(2)求满足条件m=n的点M的轨迹Q的方程.
(3)在(2)的条件下,试探究轨迹Q上是否存在点B(x1,y1),使得过点B的切线与两坐标轴围成的三角形的面积等于.若存在,请求出点B的坐标;若不存在,请说明理由.
已知函数.
(1)求曲线在点
处的切线方程;
(2)设,如果过点
可作曲线
的三条切线,证明:
.
已知函数的图像过点P(-1,2),且在点P处的切线恰好与直线
垂直。
(1)求函数的解析式;
(2)若函数在区间
上单调递增,求实数m的取值范围。
已知函数
(1)若在
上是减函数,求
的最大值;
(2)若的单调递减区间是
,求函数y=
图像过点
的切线与两坐标轴围成图形的面积。
设函数.
(Ⅰ)求f (x)的单调区间;
(Ⅱ)若当时,不等式f (x)<m恒成立,求实数m的取值范围;
(Ⅲ)若关于x的方程在区间[0, 2]上恰好有两个相异的实根,求实数a的取值范围.
已知a为实数,函数
(1)求的值;
(II)若a>2,求函数的单调区间.