游客
题文

已知圆C与两圆x2+(y+4)2=1,x2+(y-2)2=1外切,圆C的圆心轨迹方程为L,设L上的点与点M(x,y)的距离的最小值为m,点F(0,1)与点M(x,y)的距离为n.
(1)求圆C的圆心轨迹L的方程.
(2)求满足条件m=n的点M的轨迹Q的方程.
(3)在(2)的条件下,试探究轨迹Q上是否存在点B(x1,y1),使得过点B的切线与两坐标轴围成的三角形的面积等于.若存在,请求出点B的坐标;若不存在,请说明理由.

科目 数学   题型 解答题   难度 较难
知识点: 参数方程
登录免费查看答案和解析
相关试题

如图,在正四棱锥中,底面是边长为2的正方形,侧棱,的中点,是侧棱上的一动点。

(1)证明:
(2)当直线时,求三棱锥的体积.

在一个盒子中,放有标号分别为的三个小球,现从这个盒子中,有放回地先后抽得两个小球的标号分别为,设为坐标原点,设的坐标为.
(1)求的所有取值之和;
(2)求事件“取得最大值”的概率.

已知数列中,,满足
(1)求证:数列为等差数列;
(2)求数列的前项和.

已知函数f(x)=lnxg(x)=k·.
(I)求函数F(x)= f(x)- g(x)的单调区间;
(Ⅱ)当x>1时,函数f(x)> g(x)恒成立,求实数k的取值范围;
(Ⅲ)设正实数a1a2a3,,an满足a1+a2+a3++an=1,
求证:ln(1+)+ln(1+)++ln(1+)>

数列{an}是公比为的等比数列,且1-a2是a1与1+a3的等比中项,前n项和为Sn;数列{bn}是等差数列,b1=8,其前n项和Tn满足Tn=n·bn+1(为常数,且≠1).
(I)求数列{an}的通项公式及的值;
(Ⅱ)比较++++与了Sn的大小.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号