某人有甲、乙两个电子密码箱,欲存放A,B,C三份不同的重要文件,则两个密码箱都不空的概率是 .
已知{an}是递增数列,且对任意的n∈N*都有an=n2+2sinθ·n(θ∈[0,2π])恒成立,则角θ的取值范围是________________.
已知双曲线.(a>0,b>0)的左顶点与抛物线y2=2px的焦点的距离为4,且双曲线的一条渐近线与抛物线的准线交点坐标为(-2,-1),则双曲线的焦距为_______________.
执行如图所示的程序框图,则输出的n值是____________
若sinθ=,θ是第二象限的角,则tan2θ=_______________.
若以曲线y=f(x)上任一点M(x1,y1)为切点作切线l1,曲线上总存在异于M的点N(x2,y2),以点N为切点作切线l2,且l1∥l2,则称曲线y=f(x)具有“可平行性”.现有下列命题:
①函数y=(x-2)2+lnx的图象具有“可平行性”;
②定义在(-∞,0)∪(0,+∞)的奇函数y=f(x)的图象都具有“可平行性”;
③三次函数f(x)=x3-x2+ax+b具有“可平行性”,且对应的两切点M(x1,y1),N(x2,y2)的坐标满足x1+x2=;
④要使得分段函数f(x)=的图象具有“可平行性”,当且仅当实数m=1.
其中的真命题是_______________.(写出所有真命题的序号)