如图,在某城市中,M,N两地之间有整齐的方格形道路网,A1,A2,A3,A4是道路网中位于一条对角线上的4个交汇处,今在道路网M,N处的甲、乙两人分别要到N,M处,他们分别随机地选择一条沿街的最短路径,同时以每10分钟一格的速度分别向N,M处行走,直到到达N,M为止.
(1)求甲经过A2的概率.
(2)求甲、乙两人相遇经A2点的概率.
(3)求甲、乙两人相遇的概率.
已知函数的定义域为
. 设点P是函数图象上的任意一点,过点P分别作直线y=x和y轴的垂线,垂足分别为M、N.
(1)求证:是定值;
(2)判断并说明有最大值还是最小值,并求出此最大值或最小值.
已知数列的前
项和
满足
,又
,
.
(1)求实数k的值;
(2)求证:数列是等比数列.
辽宁广播电视塔位于沈阳市沈河区青年公园西侧,蜿蜒的南运河带状公园内,占地8000平方米.全塔分为塔座、塔身、塔楼和桅杆四部分.某数学活动小组在青年公园内的A处测得塔顶B处的仰角为45°. 在水平地面上,沿着A点与塔底中心C处连成的直线行走129米后到达D处(假设可以到达),此时测得塔顶B处的仰角为60°.
(1)请你根据题意,画出一个ABCD四点间的简单关系图形;
(2)根据测量结果,计算辽宁广播电视塔的高度(精确到1米).
解关于的一元二次不等式
.
设椭圆的方程为,斜率为1的直线不经过原点
,而且与椭圆相交于
两点,
为线段
的中点.
(1)问:直线与
能否垂直?若能,
之间满足什么关系;若不能,说明理由;
(2)已知为
的中点,且
点在椭圆上.若
,求椭圆的离心率.