甲、乙两运动员进行射击训练,已知他们击中目标的环数都稳定在7,8,9,10环,且每次射击成绩互不影响,射击环数的频率分布表如下:
甲运动员
射击环数 |
频数 |
频率 |
7 |
10 |
0.1 |
8 |
10 |
0.1 |
9 |
x |
0.45 |
10 |
35 |
y |
合计 |
100 |
1 |
乙运动员
射击环数 |
频数 |
频率 |
7 |
8 |
0.1 |
8 |
12 |
0.15 |
9 |
z |
|
10 |
|
0.35 |
合计 |
80 |
1 |
若将频率视为概率,回答下列问题:
(1)求甲运动员射击1次击中10环的概率.
(2)求甲运动员在3次射击中至少有1次击中9环以上(含9环)的概率.
(3)若甲运动员射击2次,乙运动员射击1次,ξ表示这3次射击中击中9环以上(含9环)的次数,求ξ的分布列及E(ξ).
设函数,
.
(Ⅰ)讨论函数的单调性;
(Ⅱ)如果对于任意的,都有
成立,试求实数a的取值范围.
已知数列{an}各项均为正数,其前n项和为Sn,且满足4Sn=(an+1)2.
(1)求{an}的通项公式;
(2)设bn=,求数列{bn}的前n项和为Tn
已知二次函数f(x)的最小值为1,且f(0)=f(2)=3.
(1)求f(x)的解析式;
(2)若f(x)在区间[2a,a+1]上不单调,求a的取值范围
已知函数。
(Ⅰ)求函数的图像在
处的切线方程;
(Ⅱ)求的最大值;
已知函数f(x)=cos x(sin x+cos x)-.
(1)若0<α<,且sin α=
,求f(α)的值;
(2)求函数f(x)的最小正周期及单调递增区间.