某班同学利用国庆节进行社会实践,对[25,55]岁的人群随机抽取n人进行了一次生活习惯是否符合低碳观念的调查,若生活习惯符合低碳观念的称为“低碳族”,否则称为“非低碳族”,得到如下统计表和各年龄段人数频率分布直方图:
组 数 |
分 组 |
低碳族的人数 |
占本组的频率 |
第一组 |
[25,30) |
120 |
0.6 |
第二组 |
[30,35) |
195 |
p |
第三组 |
[35,40) |
100 |
0.5 |
第四组 |
[40,45) |
a |
0.4 |
第五组 |
[45,50) |
30 |
0.3 |
第六组 |
[50,55] |
15 |
0.3 |
(1)补全频率分布直方图并求n,a,p的值.
(2)为调查该地区的年龄与生活习惯和是否符合低碳观念有无关系,调查组按40岁以下为青年,40岁以上(含40岁)为老年分成两组,请你先完成下面2×2列联表,并回答是否有99%的把握认为该地区的生活习惯是否符合低碳观念与人的年龄有关.
参考公式:χ2=
P(χ2≥x0) |
0.050 |
0.010 |
0.001 |
x0 |
3.841 |
6.635 |
10.828 |
年龄组 是否低碳族 |
青 年 |
老 年 |
总 计 |
低碳族 |
|
|
|
非低碳族 |
|
|
|
总计 |
|
|
|
(本小题满分12分)
班主任为了对本班学生的考试成绩进行分析,决定从全班25位女同学,15位男同学中随机抽取一个容量为8的样本进行分析.
(1)如果按性别比例分层抽样,可以得到多少个不同的样本(只要求写出算式即可,不必计算出结果);
(2)随机抽取8位同学,数学分数依次为:60,65,70,75,80,85,90,95;
物理成绩依次为:72,77,80,84,88,90,93,95,
①若规定90分(含90分)以上为优秀,记为这8位同学中数学和物理分数均为优秀的人数,求
的分布列和数学期望;
②若这8位同学的数学、物理分数事实上对应下表:
学生编号 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
数学分数![]() |
60 |
65 |
70 |
75 |
80 |
85 |
90 |
95 |
物理分数![]() |
72 |
77 |
80 |
84 |
88 |
90 |
93 |
95 |
根据上表数据可知,变量与
之间具有较强的线性相关关系,求出
与
的线性回归方程(系数精确到0.01).(参考公式:
,其中
,
;参考数据:
,
,
,
,
,
,
)
(本小题满分12分)
“神州”号飞船返回舱顺利到达地球后,为了及时将航天员救出,地面指挥中心在返回舱预计到达的区域安排了同一条直线上的三个救援中心(记为
).当返回舱距地面1万米的
点时(假定以后垂直下落,并在
点着陆),
救援中心测得飞船位于其南偏东
方向,仰角为
,
救援中心测得飞船位于其南偏西
方向,仰角为
.
救援中心测得着陆点
位于其正东方向.
(1)求两救援中心间的距离;
(2)救援中心与着陆点
间的距离.
已知函数,(1)求
的定义域和值域;
(2)讨论单调性.
设,已知
时,
有最小值
,
(1)求与
的值;(2)在(1)的条件下,求
的解集
;
(3)设集合,且
,求实数
的取值范围
已知函数.
(1)求的定义域;
(2)讨论的奇偶性;
(3)讨论在
上的单调性.