质量为10 kg的物体按照s(t)=3t2+t+4的规律做直线运动,
求运动开始后4秒时物体的动能.
如图,六棱锥的底面是边长为1的正六边形,
底面
。
(Ⅰ)求证:平面平面
;
(Ⅱ)若直线PC与平面PDE所成角的正弦值为,求六棱锥
高的大小。
某经销商试销A、B两种商品一个月(30天)的记录如下:
日销售量(件) |
0 |
1 |
2 |
3 |
4 |
5 |
商品A的频数 |
3 |
5 |
7 |
7 |
5 |
3 |
商品B的频数 |
4 |
4 |
6 |
8 |
5 |
3 |
若售出每种商品1件均获利40元,用表示售出A、B商品的日利润值(单位:元).将频率视为概率.
(Ⅰ)设两种商品的销售量互不影响,求两种商品日获利值均超过100元的概率;
(Ⅱ)由于某种原因,该商家决定只选择经销A、B商品的一种,你认为应选择哪种商品,说明理由.
如图,是半径为2,圆心角为
的扇形,
是扇形的内接矩形.
(Ⅰ)当时,求
的长;
(Ⅱ)求矩形面积的最大值.
已知函数f(x)=|x-2|+2|x-a|(a∈R).
(I)当a=1时,解不等式f(x)>3;
(II)不等式在区间(-∞,+∞)上恒成立,求实数a的取值范围
在平面直角坐标系.x0y中,以原点O为极点,x轴的正半轴为极轴建立极坐标系,已知曲线 C的极坐标方程为:
(I)求曲线l的直角坐标方程;
(II)若直线l的参数方程为(t为参数),直线l与曲线C相交于A、B两点求|AB|的值