设f(x)=x3+ax2+bx+1的导数f′(x)满足f′(1)=
2a,f′(2)=-b,其中a,b∈R.
①求曲线y=f(x)在点(1,f(1))处的切线方程;②设g(x)=f′(x)e-x,求g(x)的极值.
已知曲线的方程为
,过原点作斜率为
的直线和曲线
相交,另一个交点记为
,过
作斜率为
的直线与曲线
相交,另一个交点记为
,过
作斜率为
的直线与曲线
相交,另一个交点记为
,如此下去,一般地,过点
作斜率为
的直线与曲线
相交,另一个交点记为
,设点
(
).
(1)指出,并求
与
的关系式(
);
(2)求(
)的通项公式,并指出点列
,
, ,
, 向哪一点无限接近?说明理由;
(3)令,数列
的前
项和为
,设
,求所有可能的乘积
的和.
设椭圆的中心和抛物线
的顶点均为原点
,
、
的焦点均在
轴上,过
的焦点F作直线
,与
交于A、B两点,在
、
上各取两个点,将其坐标记录于下表中:
(1)求,
的标准方程;
(2)若与
交于C、D两点,
为
的左焦点,求
的最小值;
(3)点是
上的两点,且
,求证:
为定值;反之,当
为此定值时,
是否成立?请说明理由.
为了寻找马航残骸,我国“雪龙号”科考船于2014年3月26日从港口
出发,沿北偏东
角的射线
方向航行,而在港口北偏东
角的方向上有一个给科考船补给物资的小岛
,
海里,且
.现指挥部需要紧急征调位于港口
正东
海里的
处的补给船,速往小岛
装上补给物资供给科考船.该船沿
方向全速追赶科考船,并在
处相遇.经测算当两船运行的航线与海岸线
围成的三角形
的面积
最小时,这种补给方案最优.
(1)求关于
的函数关系式
;
(2)应征调位于港口正东多少海里处的补给船只,补给方案最优?
如图,点A、B是单位圆上的两点,点C是圆
与
轴的正半轴的交点,将锐角
的终边
按逆时针方向旋转
到
.
(1)若点A的坐标为,求
的值;
(2)用表示
,并求
的取值范围.
已知函数.
(1)求的单调区间;
(2)若在
上恒成立,求所有实数
的值;
(3)对任意的,证明: