椭圆C:=1(a>b>0)的左、右焦点分别是F1、F2,离心率为
,过F1且垂直于x轴的直线被椭圆C截得的线段长为1.
(1)求椭圆C的方程;
(2)点P是椭圆C上除长轴端点外的任一点,过点P作斜率为k的直线l,使得l与椭圆C有且只有一个公共点.设直线PF1,PF2的斜率分别为k1,k2.若k≠0,试证明+
为定值,并求出这个定值.
(本小题满分14分)
对于函数,若存在
,使
成立,则称
为
的一个不动点.设函数
(
).
(Ⅰ)当,
时,求
的不动点;
(Ⅱ)若有两个相异的不动点
.
(i)当时,设
的对称轴为直线
,求证:
;
(ii)若,且
,求实数
的取值范围.
(本小题满分15分)
设数列满足
.
(Ⅰ)求;
(Ⅱ)设,
,求证:数列
中
最小.
(本小题满分15分)
已知椭圆:
(
)的一个焦点为
,且
上一点到其两焦点的距离之和为
.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)设直线与椭圆
交于不同两点
,若点
满足
,求实数
的值.
(本小题满分15分)
已知抛物线:
的焦点为
,过
且斜率为
的直线
交抛物线
于
,
两点.
(Ⅰ)求抛物线的标准方程;
(Ⅱ)求的面积.
等差数列中,
,
.
(Ⅰ)求数列的通项公式;
(Ⅱ)设,求数列
的前
项和
.