(本小题满分14分)
对于函数,若存在
,使
成立,则称
为
的一个不动点.设函数
(
).
(Ⅰ)当,
时,求
的不动点;
(Ⅱ)若有两个相异的不动点
.
(i)当时,设
的对称轴为直线
,求证:
;
(ii)若,且
,求实数
的取值范围.
若函数,非零向量
,我们称
为函数
的“相伴向量”,
为向量
的“相伴函数”.
(1)已知函数的最小正周期为
,求函数
的“相伴向量”;
(2)记向量的“相伴函数”为
,将
图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得的图象上所有点向左平移
个单位长度,得到函数
,若
,求
的值;
(3)对于函数,是否存在“相伴向量”?若存在,求出
“相伴向量”;
若不存在,请说明理由.
已知点是抛物线
上不同的两点,点
在抛物线
的准线
上,且焦点
到直线
的距离为
.
(I)求抛物线的方程;
(2)现给出以下三个论断:①直线过焦点
;②直线
过原点
;③直线
平行
轴.
请你以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题,并加以证明.
如图,在四棱锥中,底面
是直角梯形,
,
,
平面平面
,若
,
,
,
,且
.
(1)求证:平面
;
(2)设平面与平面
所成二面角的大小为
,求
的值.
某食品厂为了检查一条自动包装流水线的生产情况,从该流水线上随机抽取40件产品作为样本,测得它们的重量(单位:克),将重量按如下区间分组:,
,
,
,
,得到样本的频率分布直方图(如图所示).若规定重量超过495克但不超过510克的产品为合格产品,且视频率为概率,回答下列问题:
(1)在上述抽取的40件产品中任取2件,设为合格产品的数量,求
的分布列和数学期
望;
(2)若从流水线上任取3件产品,求恰有2件合格产品的概率.
已知数列的前
项和为
满足
(
)
(1)证明数列为等比数列;
(2)设,求数列
的前
项和