甲、乙两人进行投篮比赛,两人各投3球,谁投进的球数多谁获胜,已知每次投篮甲投进的概率为,乙投进的概率为
,求:
(1)甲投进2球且乙投进1球的概率;
(2)在甲第一次投篮未投进的条件下,甲最终获胜的概率.
(本小题满分12分)如图,已知矩形所在平面与矩形
所在平面垂直,
,
=1,
,
是线段
的中点.
(1)求证:平面
;
(2)求多面体的表面积;
(3)求多面体的体积.
(本小题12分)已知函数的图象在
轴上的截距为1,在相邻两最值点
,
上
分别取得最大值和最小值.
⑴求的解析式;
⑵若函数满足方程
求在
内的所有实数根之和.
(本小题满分12分)
设平面向量= ( m , -1),
=" (" 2 , n ),其中 m, n
{-2,-1,1,2}.
(1)记“使得//
成立的( m,n)”为事件A,求事件A发生的概率;
(2)记“使得⊥(
-2
)成立的( m,n)”为事件B,求事件B发生的概率.
(本小题满分10分)
在平面直角坐标系xOy中,点A(-1,-2)、B(2,3)、C(-2,-1).
(1)求以线段AB、AC为邻边的平行四边形两条对角线的长;
(2)设实数t满足()·
=0,求t的值.
(14分)直线l:y=kx+1与双曲线C:2x2-y2=1的右支交于不同的两点A、B.
(1)求实数k的取值范围;
(2)是否存在实数k,使得以线段AB为直径的圆经过双曲线C的右焦点F?若存在,求出k的值;若不存在,说明理由.