已知N=,计算N2.
若抛物线上总存在关于直线
对称的两点,求
的范围.
如图,已知某椭圆的焦点是F1(-4,0)、F2(4,0),过点F2并垂直于x轴的直线与椭圆的一个交点为B,且|F1B|+|F2B|=10,椭圆上不同的两点A(x1,y1),C(x2,y2)满足条件: |F2A|、|F2B|、|F2C|成等差数列.
(1)求该弦椭圆的方程;
(2)求弦AC中点的横坐标;
(3)设弦AC的垂直平分线的方程为y=kx+m,求m的取值范围.
已知中心在原点,顶点A1、A2在x轴上,离心率e=的双曲线过点P(6,6).
(1)求双曲线方程.
(2)动直线l经过△A1PA2的重心G,与双曲线交于不同的两点M、N,问:是否存在直线l,使G平分线段MN,证明你的结论.
已知双曲线的离心率e=2,A,B为双曲线上两点,线段AB的垂直平分线为
①求双曲线C经过二、四象限的渐近线的倾斜角
②试判断在椭圆C的长轴上是否存在一定点N(a,0),
使椭圆上的动点M满足的最小值为3,若存在求出所有可能的a值,若不存在说明理由.
已知
①点P(x,y)的轨迹C的方程;
②若直线与曲线C交于A,B两点,D(0,-1)且有|AD|=|BD|,试求m的值.