(1)我市开展了“寻找雷锋足迹”的活动,某中学为了了解七年级800名学生在“学雷锋活动月”中做好事的情况,随机调查了七年级50名学生在一个月内做好事的次数,并将所得数据绘制成统计图,请根据图中提供的信息解答下列问题:
①所调查的七年级50名学生在这个月内做好事次数的平均数是____,众数是_____,极差是 ___
②根据样本数据,估计该校七年级800名学生在“学雷锋活动月”中做好事不少于4次的人数.
(2)甲口袋有2个相同的小球,它们分别写有数字1和2;乙口袋中装有3个相同的小球,它们分别写有数字3、4和5,从这两个口袋中各随机地取出1个小球.
①用“树状图法”或“列表法”表示所有可能出现的结果;
②取出的两个小球上所写数字之和是偶数的概率是多少?
﹣(本题8分)如图,在等腰梯形中,
为底
的中点,连结
、
.
求证:.
﹣(本题8分)化简:
如图,在平面直角坐标系中,抛物线
向左平移1个单位,再向下平移4个单位,得到抛物线
.所得抛物线与
轴交于
两点(点
在点
的左边),与
轴交于点
,顶点为
.
(1)求的值;
(2)求直线AC的函数解析式。
(3)在线段上是否存在点
,使
与
相似.若存在,求出点
的坐标;若不存在,说明理由.
(9分)如图,把△ABC置于平面直角坐标系中,请你按以下要求分别画图:
(1)画出△ABC向下平移5个单位长度得到的△A1B1C1;
(2)画出△ABC绕原点O逆时针旋转90º得到的△A2B2C2;
(3)画出△ABC关于原点O对称的△A3B3C3.
如图,有A、B两个转盘,其中转盘A被分成4等份,转盘B被分成3等份,并在每一份内标上数字。现甲乙两人同时分别转动其中一个转盘,转盘停止后(当指针指在边界线上时视为无效,重转),若将A转盘指针指向的数字记为,B转盘指针指向的数字记为
,从而确定点
的坐标为
.记S=x+y
(1)请用列表或画树状图的方法写出所有可能得到的点的坐标;
(2)在(1)的基础上,求点P落在反比例函数图像上的概率.
(3)李刚为甲乙两人设计了一个游戏:当S<6时甲获胜,否则乙获胜.你认为这个游戏公平吗?对谁有利?