已知函数f(x)=ax3+bx2-3x(a、b∈R)在点x=-1处取得极大值为2.
(1)求函数f(x)的解析式;
(2)若对于区间[-2,2]上任意两个自变量的值x1、x2,都有|f(x1)-f(x2)|≤c,求实数c的最小值.
已知等差数列的公差
大于0,且
是方程
的两根,数列
的前
项和为
,
.
(1)求数列的通项公式;
(2)求数列的前
项和
.
已知函数f(x)=x2+(x≠0).
(1)判断f(x)的奇偶性,并说明理由;
(2)若f(1)=2,试判断f(x)在[2,+∞)上的单调性
若二次函数f(x)=ax2+bx+c(a≠0)满足f(x+1)-f(x)=2x,且f(0)=1.
(1)求f(x)的解析式;
(2)若在区间[-1,1]上,不等式f(x)>2x+m恒成立,求实数m的取值范围.
已知函数f(x)=x2+2ax+3,x∈[-4,6].
(1)当a=-2时,求f(x)的最值;
(2)求实数a的取值范围,使y=f(x)在区间[-4,6]上是单调函数;
(3)当a=1时,求f(|x|)的单调区间.
设p:函数y=loga(x+1)(a>0且a≠1)在(0,+∞)上单调递减; q:曲线y=x2+(2a-3)x+1与x轴交于不同的两点.如果p∧q为假,p∨q为真,求实数a的取值范围.