在数列{an}中,a1=2,an+1=4an-3n+1,n∈N*.
(1)求证:数列{an-n}是等比数列;
(2)求数列{an}的前n项和Sn;
(3)求证:不等式Sn+1≤4Sn对任意n∈N*皆成立.
(本小题满分8分)
一个学校的足球队、篮球队和排球队分别有28,22,17名成员,一些成员不止参加一支球队,具体情况如图所示,随机选取的一名成员:
(1)属于不止1支球队的概率是多少?
(2)属于不超过2支球队的概率是多少?
(本小题满分8分)
已知都是锐角,
(Ⅰ)求的值
(Ⅱ)求的值
(本小题满分14分)已知函数f(x)=alnx+x2(a为实常数).
(Ⅰ)若a=-2,求证:函数f(x)在(1,+∞)上是增函数;
(Ⅱ)求函数f(x)在[1,e]上的最小值及相应的x值;
(本小题满分12分)假设关于某设备使用年限x(年)和所支出的维修费用y(万元)有如下统计资料:
![]() |
2 |
3 |
4 |
5 |
6 |
![]() |
2.2 |
3.8 |
5.5 |
6.5 |
7.0 |
若由资料知,y对x呈线性相关关系,试求:
(1)回归直线方程;
(2)估计使用年限为10年时,维修费用约是多少?
(本小题满分13分)已知二次函数f(x)满足:①在x=1时有极值;②图象过点(0,-3),且在该点处的切线与直线2x+y=0平行.
⑴求f(x)的解析式-
⑵求函数g(x)=f(x2)的单调递增区间.