设无穷数列{an}满足:n∈Ν,an<an+1,an∈N.记bn=aan,cn=aan+1(n∈N*).
(1)若bn=3n(n∈N*),求证:a1=2,并求c1的值;
(2)若{cn}是公差为1的等差数列,问{an}是否为等差数列,证明你的结论.
(本小题满分7分)选修4—2:矩阵与变换
已知矩阵M=有特征向量
=
,
=
,相应的特征值为λ1,λ2.
(Ⅰ)求矩阵M的逆矩阵M-1及λ1,λ2;
(Ⅱ)对任意向量=
,求M100
.
已知为为双曲线
的两个焦点,焦距
,过左焦点
垂直于
轴的直线,与双曲线
相交于
两点,且
为等边三角形.
(1)求双曲线的方程;
(2)设为直线
上任意一点,过右焦点
作
的垂线交双曲线
与
两点,求证:直线
平分线段
(其中
为坐标原点);
(3)是否存在过右焦点的直线
,它与双曲线
的两条渐近线分别相交于
两点,且使得
的面积为
?若存在,求出直线
的方程;若不存在,请说明理由.
已知函数,
(a、b为常数).
(1)求函数在点(1,
)处的切线方程;
(2)当函数g(x)在x=2处取得极值-2.求函数的解析式;
(3)当时,设
,若函数
在定义域上存在单调减区间,求实数b的取值范围;
【改编】在如图所示的几何体中,四边形是正方形,
,
,且
,
,
.
(Ⅰ)若与
交于点
,求证:
平面
;
(Ⅱ)求证:平面
;
(Ⅲ)求二面角与二面角
的正切值之比.
某示范性高中的校长推荐甲、乙、丙三名学生参加某大学自主招生考核测试,在本次考核中只有合格和优秀两个等级.若考核为合格,授予10分降分资格;考核为优秀,授予20分降分资格.假设甲、乙、丙考核为优秀的概率分别为、
、
,他们考核所得的等级相互独立.
(1)求在这次考核中,甲、乙、丙三名学生至少有一名考核为优秀的概率;
(2)记在这次考核中甲、乙、丙三名学生所得降分之和为随机变量ξ,求随机变量ξ的分布列和数学期望.