(本小题满分14分)
已知条件:
条件:
(Ⅰ)若,求实数
的值;
(Ⅱ)若是
的充分条件,求实数
的取值范围.
.(本小题满分14分)已知定义在上的奇函数
满足
,且对任意
有
.
(Ⅰ)判断在
上的奇偶性,并加以证明.
(Ⅱ)令,
,求数列
的通项公式.
(Ⅲ)设为
的前
项和,若
对
恒成立,求
的最大值.
(本小题满分14分)设函数
,其中
(Ⅰ)当判断
在
上的单调性.
(Ⅱ)讨论的极值点.
(本小题满分14分)在平面直角坐标系中,设点
,直线
:
,点
在直线
上移动,
是线段
与
轴的交点,
.
(I)求动点的轨迹的方程
;
(II)设圆过
,且圆心
在曲
线
上, 设圆
过
,且圆心
在曲线
上,
是圆
在
轴上截得的弦,当
运动时弦长
是否为定值?请说明理由.
(本小题满分14分)如图,为等边三角形,
为矩形,平面
平面
,
,
分别为
、
、
中点,
与底面
成
角.
(Ⅰ)求证:
(Ⅱ)求二面角的正切.