(本小题满分14分)设为数列的前项和,对任意的,都有为常数,且.(1)求证:数列是等比数列;(2)设数列的公比,数列满足,求数列的通项公式;(3)在满足(2)的条件下,求数列的前项和.
已知圆+-9x=0,与顶点在原点,焦点在x轴上的抛物线交于A、B两点,OAB的垂心恰为抛物线的焦点,求抛物线的方程。
写出下列命题的“p”命题,并判断它们的真假。 (1)p:x,x+4x+4≥0;(2)p:x,x-4=0。
求直线与双曲线的两个交点和原点所构成的三角形的面积.
已知椭圆的一个焦点是(,0),且截直线x=所得弦长为,求该椭圆的方程。
过抛物线上一定点,作直线分别交抛物线于 (1)求该抛物线上纵坐标为的点到焦点的距离; (2)当与的斜率存在且倾斜角互补时,求的值,并证明直线的斜率是非零常数。
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号