(本题满分14分)设直线. 若直线l与曲线S同时满足下列两个条件:①直线l与曲线S相切且至少有两个切点;②对任意x∈R都有
. 则称直线l为曲线S的“上夹线”.(Ⅰ)已知函数
.求证:
为曲线
的“上夹线”.
(Ⅱ)观察下图:
根据上图,试推测曲线的“上夹线”的方程,并给出证明.
(本小题满分12分)已知为实数,
(1)求导数;
(2)若,求
在[-2,2]上的最大值和最小值;
(本小题满分12分)已知复数,当实数
为何值时,
(1)为实数;(2)
为虚数;(3)
为纯虚数.
(本小题满分14分)
已知函数(
).
(1)若时,求函数
的值域;
(2)若函数的最小值是1,求实数
的值.
(本小题满分14分)
某工厂在甲、乙两地的两个分厂各生产某种机器12台和6台.现销售给A地10台,B地8台.已知从甲地调运1台至A地、B地的运费分别为400元和800元,从乙地调运1台至A地、B地的费用分别为300元和500元.
(1)设从甲地调运x台至A地,求总费用y关于台数x的函数解析式;
(2)若总运费不超过9000元,问共有几种调运方案;
(3)求出总运费最低的调运方案及最低的费用.
(本小题满分14分)
已知函数(
),且
.
(1)求α的值;
(2)求函数的零点;
(3)判断在(-∞,0)上的单调性,并给予证明.