(本题满分14分)设直线. 若直线l与曲线S同时满足下列两个条件:①直线l与曲线S相切且至少有两个切点;②对任意x∈R都有
. 则称直线l为曲线S的“上夹线”.(Ⅰ)已知函数
.求证:
为曲线
的“上夹线”.
(Ⅱ)观察下图:
根据上图,试推测曲线的“上夹线”的方程,并给出证明.
已知直线经过直线
与直线
的交点
,且垂直于直线
.
(1)求直线的方程;
(2)求直线关于原点
对称的直线方程.
如果函数满足在集合
上的值域仍是集合
,则把函数
称为N函数.
例如:就是N函数.
(Ⅰ)判断下列函数:①,②
,③
中,哪些是N函数?(只需写出判断结果);
(Ⅱ)判断函数是否为N函数,并证明你的结论;
(Ⅲ)证明:对于任意实数,函数
都不是N函数.
(注:“”表示不超过
的最大整数)
已知椭圆:
的离心率为
,右焦点为
,右顶点
在圆
:
上.
(Ⅰ)求椭圆和圆
的方程;
(Ⅱ)已知过点的直线
与椭圆
交于另一点
,与圆
交于另一点
.请判断是否存在斜率不为0的直线
,使点
恰好为线段
的中点,若存在,求出直线
的方程;若不存在,说明理由.
已知函数,其中
为常数.
(Ⅰ)若函数是区间
上的增函数,求实数
的取值范围;
(Ⅱ)若在
时恒成立,求实数
的取值范围.
如图,在四棱锥中,底面
是菱形,
,且侧面
平面
,点
是棱
的中点.
(Ⅰ)求证:平面
;
(Ⅱ)求证:;
(Ⅲ)若,求证:平面
平面
.