已知函数.
(1)求的最小值;
(2)当函数自变量的取值区间与对应函数值的取值区间相同时,这样的区间称为函数的保值区间.设,试问函数
在
上是否存在保值区间?若存在,请求出一个保值区间;若不存在,请说明理由.
设为正实数,
,
,
。
(Ⅰ)如果,则是否存在以
为三边长的三角形?请说明理由;
(Ⅱ)对任意的正实数,试探索当存在以
为三边长的三角形时
的取值范围。
已知为坐标原点,
,
。
(Ⅰ)求的单调递增区间;
(Ⅱ)若的定义域为
,值域为
,求
的值。
某研究机构准备举行一次数学新课程研讨会,共邀请50名一线教师参加,使用不同版本教材的教师人数如下表所示:
版本 |
人教A版 |
人教B版 |
苏教版 |
北师大版 |
人数 |
20 |
15 |
5 |
10 |
(Ⅰ)从这50名教师中随机选出2名,求2人所使用版本相同的概率;
(Ⅱ)若随机选出2名使用人教版的教师发言,设使用人教A版的教师人数为,求随机变量
的分布列和数学期望。
已知函数(其中
)
(1)若,求函数
的单调区间及极小值;
(2)若直线对任意的
都不是曲线
的切线,求
的最小值及实数
的取值范围.
设椭圆的焦点分别为
、
,直线
:
交
轴于点
,且
.
(1)试求椭圆的方程;
(2)过、
分别作互相垂直的两直线与椭圆分别交于
、
、
、
四点(如图所示),试求四边形
面积的最大值和最小值.