在某高校自主招生考试中,所有选报II类志向的考生全部参加了“数学与逻辑”和“阅读与表达”两个科目的考试,成绩分为五个等级. 某考场考生的两科考试成绩数据统计如下图所示,其中“数学与逻辑”科目的成绩为
的考生有
人.
(1)求该考场考生中“阅读与表达”科目中成绩为的人数;
(2)若等级分别对应
分,
分,
分,
分,
分,求该考场考生“数学与逻辑”科目的平均分;
(3)已知参加本考场测试的考生中,恰有两人的两科成绩均为. 在至少一科成绩为
的考生中,随机抽取两人进行访谈,求这两人的两科成绩均为
的概率.
圆经过点A(2,-3)和B(-2,-5).
(1)若圆的面积最小,求圆的方程;
(2)若圆心在直线x-2y-3=0上,求圆的方程.
求经过直线和
的交点,且在两坐标轴上的截距相等的直线方程.
(本小题10分,计入总分)
已知数列满足:
⑴求;
⑵当时,求
与
的关系式,并求数列
中偶数项的通项公式;
⑶求数列前100项中所有奇数项的和.
已知数列是首项为
,公比
的等比数列. 设
,数列
满足
.
(Ⅰ)求证:数列成等差数列;
(Ⅱ)求数列的前
项和
;
(Ⅲ)若对一切正整数
恒成立,求实数
的取值范围.
设数列的前
项和为
,已知
(Ⅰ)求证:数列为等差数列,并写出
关于
的表达式;
(Ⅱ)若数列前
项和为
,问满足
的最小正整数
是多少?