在某高校自主招生考试中,所有选报II类志向的考生全部参加了“数学与逻辑”和“阅读与表达”两个科目的考试,成绩分为五个等级. 某考场考生的两科考试成绩数据统计如下图所示,其中“数学与逻辑”科目的成绩为
的考生有
人.
(1)求该考场考生中“阅读与表达”科目中成绩为的人数;
(2)若等级分别对应
分,
分,
分,
分,
分,求该考场考生“数学与逻辑”科目的平均分;
(3)已知参加本考场测试的考生中,恰有两人的两科成绩均为. 在至少一科成绩为
的考生中,随机抽取两人进行访谈,求这两人的两科成绩均为
的概率.
已知曲线C1的极坐标方程为ρcos(θ-)=-1,曲线C2的极坐标方程为ρ=2
cos(θ-
).以极点为坐标原点,极轴为x轴正半轴建立平面直角坐标系.
(Ⅰ)求曲线C2的直角坐标方程;
(Ⅱ)求曲线C2上的动点M到曲线C1的距离的最大值.
如图所示的几何体ABCDFE中,△ABC,△DFE都是等边三角形,且所在平面平行,四边形BCED为正方形,且所在平面垂直于平面ABC.
(Ⅰ)证明:平面ADE∥平面BCF;
(Ⅱ)求二面角D-AE-F的正切值.
已知常数满足
,解关于
的不等式:
.
在极坐标系内,已知曲线的方程为
,以极点为原点,极轴方向为
正半轴方向,利用相同单位长度建立平面直角坐标系,曲线
的参数方程为
(
为参数).
(1)求曲线的直角坐标方程以及曲线
的普通方程;
(2)设点为曲线
上的动点,过点
作曲线
的两条切线,求这两条切线所成角余弦值的取值范围.
已知与圆
相切于点
,经过点
的割线
交圆
于点
,
的平分线分别交
于点
.
(1)证明:;
(2)若,求
的值.