设抛物线的焦点为
,点
,线段
的中点在抛物线上. 设动直线
与抛物线相切于点
,且与抛物线的准线相交于点
,以
为直径的圆记为圆
.
(1)求的值;
(2)证明:圆与
轴必有公共点;
(3)在坐标平面上是否存在定点,使得圆
恒过点
?若存在,求出
的坐标;若不存在,说明理由.
(本小题满分13分)已知定义域为R的函数是奇函数.
(I)求a的值,并指出函数的单调性(不必说明单调性理由);
(II)若对任意的,不等式
恒成立,求
的取值范围.
(本小题满分13分) 在平面直角坐标系中,O为坐标原点,已知点A
(I)若求证:
;
(II)若求
的值.
(本小题满分14分)
已知数列满足
且
(Ⅰ)求;
(Ⅱ)求;
(Ⅲ)设为非零整数),试确定
的值,使得对任意
都有
成立。
(本小题满分13分)
已知函数是偶函数.
(1)求的值;
(2)设,若函数
与
的图象有且只有一个公共点,求实数
的取值范围.
(本小题满分14分)
市政府为招商引资,决定对外资企业第一年产品免税.某外资厂该年A型产品出厂价为每件60元,年销售量为11.8万件.第二年,当地政府开始对该商品征收税率为p%(0<p<100,即销售100元要征收p元)的税收,于是该产品的出厂价上升为每件元,预计年销售量将减少p万件.
(Ⅰ)将第二年政府对该商品征收的税收y(万元)表示成p的函数,并指出这个函数的定义域;
(Ⅱ)要使第二年该厂的税收不少于16万元,则税率p%的范围是多少?
(Ⅲ)在第二年该厂的税收不少于16万元的前提下,要让厂家获得最大销售金额,则p
应为多少?