如图,直三棱柱ABC-A1B1C1中,D、E分别是棱BC、AB的中点,点F在棱CC1上,已知AB=AC,AA1=3,BC=CF=2.
(1)求证:C1E∥平面ADF;
(2)设点M在棱BB1上,当BM为何值时,平面CAM⊥平面ADF?
已知数列、
满足:
,
,
。
(Ⅰ)求数列的通项公式;
(Ⅱ)若,求数列{
}的前n项和
在如图所示的几何体中,四边形ABCD为矩形,AB=2BC=4,BF=CF=AE=DE,EF=2,EF//AB,AF⊥CF。
(Ⅰ)若G为FC的中点,证明:AF//平面BDG;
(Ⅱ)求平面ABF与平面BCF夹角的余弦值。
在中,
分别为角
的对边,且
(Ⅰ)求;
(Ⅱ)若,点
是线段
中点,且
,若角
大于
,求
的面积.
已知函数
(Ⅰ)求函数y = f(x)的单调递增区间;
(Ⅱ)当x∈[0,] 时,函数y=f(x)的最小值为
,试确定常数a的值.
已知等差数列满足:
,
,其中
为数列
的前n项和.
(Ⅰ)求数列的通项公式;
(Ⅱ)若,且
成等比数列,求
的值。