在平面直角坐标系xOy中,F是抛物线C:x2=2py(p>0)的焦点,M是抛物线C上位于第一象限内的任意一点,过M,F,O三点的圆的圆心为Q,点Q到抛物线C的准线的距离为.
(1)求抛物线C的方程;
(2)是否存在点M,使得直线MQ与抛物线C相切于点M?若存在,求出点M的坐标;若不存在,说明理由.
(3)若点M的横坐标为,直线l:y=kx+
与抛物线C有两个不同的交点A,B,l与圆Q有两个不同的交点D,E,求当
≤k≤2时,|AB|2+|DE|2的最小值.
若椭圆的左右焦点分别为
,线段
被抛物线
的焦点
内分成了
的两段.
(1)求椭圆的离心率;
(2)过点的直线
交椭圆于不同两点
、
,且
,当
的面积最大时,求直线
的方程.
已知定义在上的函数
,其中
为大于零的常数.
(Ⅰ)当时,令
,求证:当
时,
(
为自然对数的底数);
(Ⅱ)若函数,在
处取得最大值,求
的取值范围.
一个多面体的直观图和三视图如图所示,其中分别是
的中点,
是
上的一动点.
(1)求证:
(2)当时,在棱
上确定一点
,使得
//平面
,并给出证明.
设命题p:函数是R上的减函数,
命题q:函数f(x)=x2-4x+3在上的值域为[-1,3],
若“p且q”为假命题,“p或q”为真命题,求的取值范围.
为了了解某市工厂开展群众体育活动的情况,拟采用分层抽样的方法从A、B、C三个区中抽取6个工厂进行调查.已知A、B、C区中分别有18, 27,9个工厂.
(1)求从A、B、C区中应分别抽取的工厂个数;
(2)若从抽得的6个工厂中随机地抽取2个进行调查结果的对比,求这2个工厂中至少有1个来自A区的概率。