游客
题文

如图,已知点D(0,-2),过点D作抛物线的切线l,切点A在第二象限。

(1)求切点A的纵坐标;
(2)若离心率为的椭圆恰好经过A点,设切线l交椭圆的另一点为B,若设切线l,直线OA,OB的斜率为k,,①试用斜率k表示②当取得最大值时求此时椭圆的方程。

科目 数学   题型 解答题   难度 较难
登录免费查看答案和解析
相关试题

某校举办一场篮球投篮选拔比赛,比赛的规则如下:每个选手先后在二分区、三分区和中场跳球区三个位置各投一球,只有当前一次球投进后才能投下一次,三次全投进就算胜出,否则即被淘汰. 已知某选手在二分区投中球的概率为,在三分区投中球的概率为,在中场跳球区投中球的概率为,且在各位置投球是否投进互不影响.
(Ⅰ)求该选手被淘汰的概率;
(Ⅱ)该选手在比赛中投球的个数记为ξ,求随机变量ξ的分布列与数学期望Eξ.(注:本小题结果可用分数表示)

已知数列,…,,….S为其前n项和,求S、S、S、S,推测S公式,并用数学归纳法证明.

已知的展开式中,前三项系数的绝对值依次成等差数列.
(Ⅰ)证明展开式中没有常数项;
(Ⅱ)求展开式中所有的有理项.

(本小题满分10分)
某企业生产A、B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2(注:利润与投资单位是万元)

(1)分别将A、B两种产品的利润表示为投资的函数,并写出它们的函数关系式;
(2)该企业已筹集到10万元资金,并全部投入A、B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润为多少万元?

(本小题满分9分)
如图,在底面是直角梯形的四棱锥S-ABCD中,∠ABC=90°,SA⊥面ABCD,SA=AB=BC=1,AD=.

(1)求四棱锥S-ABCD的体积.
(2)求证:面SAB⊥面SBC.
(3)求SC与底面ABCD所成角的正切值.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号