如图,已知△ABC中的两条角平分线AD和CE相交于H,∠B=60°,F在AC上,且AE=AF.(1)证明:B,D,H,E四点共圆;(2)证明:CE平分∠DEF.
在平面直角坐标系xOy中,直线l的参数方程为(t为参数),曲线C的参数方程为(θ为参数),试求直线l与曲线C的普通方程,并求出它们的公共点的坐标.
在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系.若极坐标方程为ρcosθ=4的直线与曲线(t为参数)相交于A、B两点,求|AB|.
在平面直角坐标系xOy中,若l:(t为参数)过椭圆C:(φ为参数)的右顶点,求常数a的值.
在平面直角坐标系xOy中,曲线C1和C2的参数方程分别为和(t为参数),求曲线C1和C2的交点坐标.
在椭圆=1上找一点,使这一点到直线x-2y-12=0的距离最小.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号