已知圆C:(x-3)2+(y-4)2=4,直线l1过定点A(1,0).
(1)若l1与圆相切,求l1的方程;
(2)若l1与圆相交于P、Q两点,线段PQ的中点为M,又l1与l2:x+2y+2=0的交点为N,判断AM·AN是否为定值?若是,则求出定值;若不是,请说明理由.
如图,已知点F(1,0),直线l:x=-1,P为平面上的动点,过P作l的垂线,垂足为点Q,且·
(I)求动点P的轨迹C的方程;
(II)过点F的直线交轨迹C于A、B两点,交直线l于点M.
(1)已知的值;
(2)求||·|
|的最小值.
(本小题满分12分)
数列{an}的前N项和为Sn,a1=1,an+1=2Sn (n∈N*).
(I)求数列{an}的通项an;
(II)求数列{nan}的前n项和T.
(本小题满分12分)
设函数f(x)=tx2+2t2x+t-1(x∈R,t>0).
(I)求f (x)的最小值h(t);
(II)若h(t)<-2t+m对t∈(0,2)恒成立,求实数m的取值范围.
如图,正三棱柱ABC-A1B1C1的所有棱长都为2,D为CC1中点.
(I)求证:AB1⊥平面A1BD;
(II)求二面角A-A1D-B的大小.
(本小题满分12分)
甲、乙两名跳高运动员一次试跳2米高度成功的概率分别为0.7、0.6,且每次试跳成功与否相互之间没有影响,求:
(I)甲试跳三次,第三次才能成功的概率;
(II)甲、乙两人在第一次试跳中至少有一人成功的概率;
(III)甲、乙各试跳两次,甲比乙的成功次数恰好多一次的概率.