如图,在平面直角坐标系xOy中,椭圆C的中心在坐标原点O,右焦点为F.若C的右准线l的方程为x=4,离心率e=.
(1)求椭圆C的标准方程;
(2)设点P为准线l上一动点,且在x轴上方.圆M经过O、F、P三点,求当圆心M到x轴的距离最小时圆M的方程.
已知向量.
(Ⅰ)若,求
的值;
(Ⅱ)若,求
的值.
选修4—5:《不等式选讲》
已知、
、c为正数.
(1)若直线2x-(b-3)y+6=0与直线bx+ay-5=0互相垂直,试求的最小值;
(2)求证:.
选修4-4:极坐标与参数方程
已知曲线的参数方程是
,直线
的参数方程为
.
(1)求曲线与直线
的普通方程;
(2)若直线与曲线
相交于
两点,且
,求实数
的值.
选修4-1:几何证明选讲
如图,A,B,C,D四点在同一圆上,AD的延长线与BC的延长线交于E点,且EC=ED.
(1)证明:CD∥AB;
(2)延长CD到F,延长DC到G,使得EF=EG,证明:A,B,G,F四点共圆.
已知函数在
处的切线
与直线
垂直,函数
.
(1)求实数的值;
(2)若函数存在单调递减区间,求实数b的取值范围;
(3)设是函数
的两个极值点,若
,求
的最小值.