某单位N名员工参加“社区低碳你我他”活动,他们的年龄在25岁至50岁之间。按年龄分组:第1组,第2组
,第3组
,第4组
,第5组
,由统计的数据得到的频率分布直方图如图所示,下表是年龄的频率分布表。
区间 |
![]() |
![]() |
![]() |
![]() |
![]() |
人数 |
![]() |
a |
b |
|
|
(1)求正整数a,b,N的值;
(2)现要从年龄较小的第1,2,3组中用分层抽样的方法抽取6人,则年龄在第1,2,3组中抽取的人数分别是多少?
(3)在(2)的条件下,从这6人中随机抽取2人参加社区宣传交流活动,求恰有1 人在第3组的概率。
已知等比数列满足:
,公比
,数列
的前
项和为
,且
.
(1)求数列和数列
的通项
和
;
(2)设,证明:
.
已知函数.
(1)若当时,函数
的最大值为
,求
的值;
(2)设(
为函数
的导函数),若函数
在
上是单调函数,求
的取值范围.
已知抛物线的方程为,直线
的方程为
,点
关于直线
的对称点在抛物线上.
(1)求抛物线的方程;
(2)已知,求过点
及抛物线与
轴两个交点的圆的方程;
(3)已知,点
是抛物线的焦点,
是抛物线上的动点,求
的最小值及此时点
的坐标;
如图,已知三棱柱的侧棱与底面垂直,且
,
,
,
,点
、
、
分别为
、
、
的中点.
(1)求证:平面
;
(2)求证:面
;
(3)求点到平面
的距离.
下表是某市从3月份中随机抽取的天空气质量指数(
)和“
”(直径小于等于
微米的颗粒物)
小时平均浓度的数据,空气质量指数(
)小于
表示空气质量优良.
日期编号 |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
空气质量指数(![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
“![]() ![]() ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
(1)根据上表数据,估计该市当月某日空气质量优良的概率;
(2)在上表数据中,在表示空气质量优良的日期中,随机抽取两个对其当天的数据作进一步的分析,设事件为“抽取的两个日期中,当天‘
’的
小时平均浓度不超过
”,求事件
发生的概率.