已知直线l经过点(1,0)且一个方向向量d=(1,1).椭圆C:=1(m>1)的左焦点为F1.若直线l与椭圆C交于A,B两点,满足
·
=0,求实数m的值.
已知椭圆
的左焦点为
,右顶点为A,点E的坐标为(0,c),
的面积为
.
(I)求椭圆的离心率;
(II)设点Q在线段AE上, ,延长线段FQ与椭圆交于点P,点M,N在x轴上, ,且直线PM与直线QN间的距离为c,四边形PQNM的面积为3c.
(i)求直线FP的斜率;
(ii)求椭圆的方程.
设a,
,
.已知函数
,
.
(Ⅰ)求 的单调区间;
(Ⅱ)已知函数 和 的图象在公共点 处有相同的切线,
(i)求证: 处的导数等于0;
(ii)若关于x的不等式 在区间 上恒成立,求b的取值范围.
已知
为等差数列,前
项和为
,
是首项为2的等比数列,且公比大于0,
,
,
.
(Ⅰ)求 和 的通项公式;
(Ⅱ)求数列 的前n项和 .
如图,在四棱锥
中,
平面
,
,
,
,
,
,
.
(I)求异面直线AP与BC所成角的余弦值;
(II)求证: ;
(II)求直线AB与平面PBC所成角的正弦值.
电视台播放甲、乙两套连续剧,每次播放连续剧时,需要播放广告.已知每次播放甲、乙两套连续剧时,连续剧播放时长、广告播放时长、收视人次如下表所示:
连续剧播放时长(分钟) |
广告播放时长(分钟) |
收视人次(万) |
|
甲 |
70 |
5 |
60 |
乙 |
60 |
5 |
25 |
已知电视台每周安排的甲、乙连续剧的总播放时间不多于600分钟,广告的总播放时间不少于30分钟,且甲连续剧播放的次数不多于乙连续剧播放次数的2倍.分别用x,y表示每周计划播出的甲、乙两套连续剧的次数.
(I)用x,y列出满足题目条件的数学关系式,并画出相应的平面区域;
(II)问电视台每周播出甲、乙两套连续剧各多少次,才能使总收视人次最多?