如图,在平面直角坐标系中,已知,,是椭圆上不同的三点,,,在第三象限,线段的中点在直线上.(1)求椭圆的标准方程;(2)求点C的坐标;(3)设动点在椭圆上(异于点,,)且直线PB,PC分别交直线OA于,两点,证明为定值并求出该定值.
已知等差数列中,. (I)求数列的通项公式; (II)若数列的前项和,求的值.
已知实数满足,,试确定的最大值.
过点,倾斜角为的直线与圆C:(为参数)相交于两点,试确定的值.
已知二阶矩阵M有特征值及对应的一个特征向量,并且矩阵M对应的变换将点变换成,求矩阵M.
已知函数的导函数是,在处取得极值,且. (Ⅰ)求的极大值和极小值; (Ⅱ)记在闭区间上的最大值为,若对任意的总有成立,求的取值范围; (Ⅲ)设是曲线上的任意一点.当时,求直线OM斜率的最小值,据此判断与的大小关系,并说明理由.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号