某中学为丰富教工生活,国庆节举办教工趣味投篮比赛,有两个定点投篮位置,在
点投中一球得2分,在
点投中一球得3分。某规则是:按先
后
再
的顺序投篮,教师甲在
和
点投中的概率分别是
和
,且在
两点投中与否相互独立。
(1)若教师甲投篮三次,试求他投篮得分的分布列和数学期望;
(2)若教师乙与教师甲在投中的概率相同,两人按规则各投三次,求甲胜乙的概率。
设等差数列的前n项的和为S n ,且S 4 =-62, S 6 =-75,求:
(1)的通项公式a n及前n项的和S n;
(2)|a 1 |+|a 2 |+|a 3 |+……+|a 14 |.
如图,为了测量河对岸A、B两点间的距离,在河的这边测得CD=km,∠ADB=∠CDB=30°,∠ACD=60°,∠ACB=45°,求A、B两点间的距离.
已知等差数列的首项为,若此数列从第
项开始小于
,则公差
的取值范围
设集合,
,若
,求
的取值范围.
已知函数是定义在
上的偶函数,且当
时,
.现已画出函数
在
轴左侧的图象,如图所示,并根据图象:
(1)写出函数的增区间;
(2)写出函数的解析式;
(3)若函数,求函数
的最小值.