已知函数在
与
时都取得极值.
(1)求的值;
(2)若对,不等式
恒成立,求
的取值范围.
已知实数x、y满足,试求z=
的最大值和最小值.
某家具公司制作木质的书桌和椅子两种家具,需要木工和漆工两道工序,已知木工平均四个小时做一把椅子,八个小时做一张书桌,该公司每星期木工最多有8 000个工作时;漆工平均两小时漆一把椅子,一个小时漆一张书桌,该公司每星期漆工最多有1 300个工作时.又已知制作一把椅子和一张书桌的利润分别是15元和20元,根据以上条件,怎样安排生产能获得最大利润?
画出不等式组表示的平面区域,并回答下列问题:
(1)指出x,y的取值范围;
(2)平面区域内有多少个整点?
已知直线l经过两条直线l1:x+2y=0与l2:3x-4y-10=0的交点,且与直线l3:5x-2y+3=0的夹角为,求直线l的方程.
一条光线经过P(2,3)点,射在直线l:x+y+1=0上,反射后穿过Q(1,1).
(1)求光线的入射方程;
(2)求这条光线从P到Q的长度.