在8的展开式中,
(1)系数的绝对值最大的项是第几项?
(2)求二项式系数最大的项;
(3)求系数最大的项;
(4)求系数最小的项.
已知是函数
的一个极值点,且函数
的图象在
处的切线的斜率为2
.
(Ⅰ)求函数的解析式并求单调区间.
(Ⅱ)设,其中
,问:对于任意的
,方程
在区间
上是否存在实数根?若存在,请确定实数根的个数.若不存在,请说明理由.
(本小题满分14分)
如图,四棱锥P—ABCD中,PB⊥底面ABCD,CD⊥PD,底面ABCD为直角梯形,AD∥BC,AB⊥BC,AB=AD=PB=3,点E在棱PA上,且PE=2EA。
(1)求直线PC与平面PAD所成角的余弦值;
(2)求证:PC//平面EBD;
(3)求二面角A—BE—D的余弦值.
(本小题满分14分)
如图,A,B是海面上位于东西方向相距海里的两个观测点,现位于A点北偏东
45°,B点北偏西60°的D点有一艘轮船发出求救信号,位于B点南偏西60°且与B点相距海里的C点的救援船立即即前往营救,其航行速度为30海里/小时,该救援船到达D点需要多长时间?
(本小题满分14分)
如图,已知几何体的三视图(单位:cm).
(1)在这个几何体的直观图相应的位置标出字母;
(2)求这个几何体的表面积及体积;
(3)设异面直线、
所成角为
,求
.
已知命题.命题
使得
;若“
或
为真,
且
为假”,求实数
的取值范围.