因式分解:m3n-9mn.
在一个不透明的口袋里装有只有颜色不同的黑、白两种颜色的球共20个,某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,然后把它放回袋中,不断重复。下表是活动进行中的一组统计数据:
摸球的次数n |
100 |
150 |
200 |
500 |
800 |
1000 |
摸到白球的次数m |
58 |
96 |
116 |
295 |
484 |
601 |
摸到白球的频率![]() |
0.58 |
0.64 |
0.58 |
0.59 |
0.605 |
0.601 |
请估计:当n很大时,摸到白球的频率将会接近_________;
假如你去摸一次,你摸到白球的概率是________;摸到黑球的概率是_____;
试估计口袋中黑、白两种颜色的球各有多少个?
解决了上面的问题,小明同学猛然顿悟,过去一个悬而未决的问题有办法了。这个问题是:在一个不透明的口袋里装有若干个白球,在不允许将球倒出来数的情况下,如何估计白球的个数(可以借助其他工具及用品)?请你应用统计与概率的思想和方法解决这个问题,写出解决这个问题的主要步骤及估算方法。
如图,点D是线段AB的中点,点C是线段AB的垂直平分线上的任意一点,DE⊥AC于点E,DF⊥BC于点F.
(1)求证:CE=CF;
(2)点C运动到什么位置时,四边形CEDF成为正方形?请说明理由.
⑴ 解方程:=
-3⑵ 解不等式组:
计算:(1)(-3)2-+(-1)0+
(2)
如图,已知二次函数y=a(x2-6x+8)(a>0)的图象与x轴交于点A、B两点,与y轴交于点C.
(1)求A、B两点的坐标;
(2)若S△ABC=8,则过A、B、C三点的圆是否与抛物线有第四个交点D?若存在,求出D点坐标;若不存在,说明理由.
(3)将△OAC沿直线AC翻折,点O的对应点为O'.
①若O'落在该抛物线的对称轴上,求实数a的值;
②是否存在正整数a,使得点O'落在△ABC的内部,若存在,求出整数a的值;若不存在,请说明理由.