如图,过抛物线C:y2=4x上一点P(1,-2)作倾斜角互补的两条直线,分别与抛物线交于点A(x,y1),B(x2,y2).
(1)求y1+y2的值;
(2)若y1≥0,y2≥0,求△PAB面积的最大值.
我市某校某数学老师这学期分别用两种不同的教学方式试验高一甲、乙两个班(人数均为60人,入学数学平均分和优秀率都相同,勤奋程度和自觉性都一样)。现随机抽取甲、乙两班各20名的数学期末考试成绩,并作出茎叶图如下:
(Ⅰ)依茎叶图判断哪个班的平均分高?
(Ⅱ)现从甲班所抽数学成绩不低于80分的同学中随机抽取两名同学,用表示抽到成绩为86分的人数,求
的分布列和数学期望;
(Ⅲ)学校规定:成绩不低于85分的为优秀,作出分类变量成绩与教学方式的列联表,并判断“能否在犯错误的概率不超过0.025的前提下认为成绩优秀与教学方式有关?”
下面临界值表仅供参考:
![]() |
0.15 |
0.10 |
0.05 |
0.025 |
0.010 |
0.005 |
0.001 |
![]() |
2.072 |
2.706 |
3.841 |
5.024 |
6.635 |
7.879 |
10.828 |
(参考公式:其中
)
如图,正三棱柱中,
是
的中点,
.
(Ⅰ)求证:平面
;
(Ⅱ)求二面角的平面角的余弦值.
已知单调递增的等比数列满足:
,且
是
,
的等差中项.
(Ⅰ)求数列的通项公式;
(Ⅱ)若,
,求
.
在锐角中,
、
、
分别为角
所对的边,且
.
(Ⅰ)确定角的大小;
(Ⅱ)若=
, 且
的面积为
, 求
的值.
已知函数(
R,且
)的部分图象如图所示.
(1) 求的值;
(2) 若方程在
内有两个不同的解,求实数m的取值范围.