如图,椭圆C:=1(a>b>0)的离心率为
,其左焦点到点P(2,1)的距离为
.不过原点O的直线l与C相交于A,B两点,且线段AB被直线OP平分.
(1)求椭圆C的方程;
(2)求△ABP面积取最大值时直线l的方程.
为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的 、 、 ,现在3名工人独立地从中任选一个项目参与建设。
(1)求他们选择的项目所属类别互不相同的概率;
(2)记 为3人中选择的项目属于基础设施工程、民生工程和产业建设工程的人数,求 的分布列及数学期望。
在 ,已知 ,求角A,B,C的大小。
已知函数 , M为不等式 的解集.
(1)求 ;
(2)证明:当 时, 。
在直线坐标系 中,圆 C的方程为 .
(1)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求 C的极坐标方程;
(2)直线 l的参数方程是 , l与 C交于 A、 B两点, ,求 l的斜率。
如图,在正方形 , 分别在边 上(不与端点重合),且 ,过D点作 , 垂足为F.
(1)证明: 四点共圆;
(2)若 ,E为DA的中点,求四边形BCGF的面积.