“抛阶砖”是国外游乐场的典型游戏之一.参与者只须将手上的“金币”(设“金币”的半径为1)抛向离身边若干距离的阶砖平面上,抛出的“金币”若恰好落在任何一个阶砖(边长为2.1的正方形)的范围内(不与阶砖相连的线重叠),便可获大奖.不少人被高额奖金所吸引,纷纷参与此游戏但很少有人得到奖品,请用所学的概率知识解释这是为什么.
(本小题满分12分)根据某电子商务平台的调查统计显示,参与调查的1000位上网购物者的年龄情况如下图显示.已知
、
、
三个年龄段的上网购物者人数成等差数列,求
,
的值;
该电子商务平台将年龄在
之间的人群定义为高消费人群,其他的年龄段定义为潜在消费人群,为了鼓励潜在消费人群的消费,该平台决定发放代金券,高消费人群每人发放50元的代金券,潜在消费人群每人发放100元的代金券,现采用分层抽样的方式从参与调查的1000位上网购物者中抽取5人,并在这5人中随机抽取3人进行回访,求此三人获得代金券总和为200元的概率.
(本小题满分12分)在中,
,
.
求角
的值;
设
,求
.
(本小题满分10分)选修4-5:不等式选讲
设函数,
.
当
时,求不等式
的解集;
对任意
恒有
,求实数
的取值范围.
(本小题满分10分)选修4-4:坐标系与参数方程
在直角坐标系中,曲线
的参数方程为
(
为参数),以原点
为极点,以
轴正半轴为极轴,建立极坐标系,曲线
的极坐标方程为
.
求曲线
的普通方程与曲线
的直角坐标方程;
试判断曲线
与
是否存在两个交点,若存在,求出两交点间的距离;若不存在,说明理由.
(本小题满分10分)选修4-1:几何证明选讲
如图,过点作圆
的割线
与切线
,
为切点,连接
,
,
的平分线与
,
分别交于点
,
,其中
.
求证:
;
求
的大小.